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Wednesday Thusday

9:00-11:30 Thomas Nicol,
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(continuation)

Miao Yu,

Engineering for Particle 
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(continuation)

19:00-21:00 Study Study
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SRF Cavities Applications
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CEBAF

High Energy Physics Nuclear Physics

UPCOMING:   LCLS-II, ESS, FRIB, PIP-II, …

LHC

XFEL EURISOL

ATLAS

TRIUMF

SNS

Radiation Sources

ERL

PrX
ESSPiP-II

Modern SRF cavities cover wide  range of particles beta (0.05..1),
 operating frequencies (0.072..4 GHz) and beam currents (1mA..100mA, CW & Pulsed)



Development of SC accelerating structures
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Problems of Superconducting Particle Accelerators 
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• Acceleration efficiency

             - max R/Q & min surface field  enhancement factors (electric & magnetic)

• High Order Modes (HOMs) dumping

            - incoherent effect (loss factors, cryogenic losses)

            - coherent effects  (emittance dilution, cryo-losses)

            - collective effects (transverse & longitudinal beam instabilities)

• Operation with small beam current

           - narrow cavity bandwidth & microphonics
           

• Field Emission

          -  multipactor & dark current

• High Gradient pulsed operation

             - Lorentz force detuning 

• Input Power Coupler

             - CW operation (min RF loss & static heat load)

• Beam Instrumentation

     - Cold Beam Position Monitor (low & high relativistic beam)



SRF cavity design
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SRF cavity is a complicated electro-mechanical 

assembly and consist of:

  - bare cavity shell with power and HOM couplers

  - stiffening elements (ring, bars)

  - welded LHe  vessel 

  - frequency tuners, slow and fast
  - vacuum ports

The design of SRF cavity requires a complex, self consistent electro-mechanical  analysis in order to 
minimize microphonics and/or Lorentz force detuning phenomena and preserving a good cavity 
tunability simultaneously

HWR 162.5 MHz cavity for PIP-II ILC 1.3 GHz 9-cell cavity

ERL 704 MHz 7-cell cavity



Main characteristics of  SC acceleration structure
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❑   (r/Q) determines the relationship between the acceleration gradient and  
        energy stored in the accelerating structure W per unit length:

❑   Coupling to the feeding
        line:

❑   Loaded Q:

❑   Field enhancement factors:

a) Electric: 

b) Magnetic:
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Input coupler

9-cell TESLA structure
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Main characteristics of  SC acceleration structure
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❑ Coupling coefficient:

 

❑ High Order Modes (HOM):

a)  Monopole HOM spectrum – losses, bunch-to-bunch energy spread;

b) Dipole HOM spectrum – transverse kick, beam emittance dilution.

HOM frequencies, (r/Q)s and loaded Q-factors are critical, and are the 

subject  of the structure optimization.

▪ The structure cell geometry:

Constrains:                                                         ellipse

-low field enhancement factors;

-no multipacting.

Elliptical shape for the cell and the iris.

Examples:

-TESLA structure;                                               ellipse

-Low Loss structure;

-Re-Entrant structure.
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Main characteristics of  SC acceleration structure
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❑  Resonance  frequency of the operating mode f0 ;

❑  Accelerating gradient E;

❑  Shunt impedance r per unit length; Shunt impedance is relationship between the 
acceleration gradient and dissipated power P per unit length of the structure. P is the sum of 
Ohmic losses in the structure POhm and the power radiated through the coupling ports Prad.

❑  Unloaded quality factor Q0 and geometry factor G

                                        Rs is the surface resistance, W is the energy stored
                                         in the structure per unit length.

P

E
r

2

=

−

==









S

V

s

S

s

V

Ohm

dSH

dVH

R

G

dSHR

dVH

P

W
Q

2

2

0

2

2

0

0

||

||

,
||

||








High Order modes
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▪ HOM  extraction/damping.

Criteria:
•Transverse modes: beam emittance dilution;
•Longitudinal modes: power losses, field 
enhancement, bunch-to-bunch energy spread. 

Coaxial loop coupler for superconducting
TESLA cavities

▪Trapped modes.

The end cells are to be optimized in order 
to prevent the field distribution for HOMs 
having small field in the end cavities, so-
called trapped modes. For the trapped 
modes it is a problem to reduce the loaded 
Q-factor to acceptable level.



Lorentz Force Detuning
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Design approaches
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•Aperture choice: 
•Smaller aperture → smaller field enhancement factors, higher R/Q; 
•Limitations:  
o beam losses, 
o field flatness, 
o mechanical stability, 
o surface processing,
o    Qload (coupling to the main coupler)
o    HOMs (trapped modes)
o    Wakes (electron accelerators)

 SNS  (805 MHz):     2a=86mm (β=0.61), 2a/λ = 0.23
                                           2a=98mm (β=0.81), 2a/λ = 0.26
              HIPPI (704 MHz):    2a=80mm (β=0.47), 2a/λ = 0.19
              PIP II (650 MHz):     2a=83mm (β=0.61), 2a/λ = 0.18 
                                            2a=100 mm (β=0.9), 2a/λ = 0.22



Design approaches
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Electromagnetic optimization



Design approaches
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Stiffening rings

Bellows

He vessel
Bare cavity Dressed cavity

Mechanical stiffness



Design approaches
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df/dP optimization

df/dP for stiffening ring R = 90 mm vs. 100 mm

Bellows radius of OD - 125 mm
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Design approaches
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LFD minimization

For 2 rings LFD~-0.275 Hz/(MV/m)2

For 1 ring LFD~-0.38 Hz/(MV/m)2.



Design approaches
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LFD minimization
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Design approaches
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Tuner options

Blade Tuner – scaled ILC:

• High df/dP,

• Insufficient  tuning efficiency;

Lever Tuner  design:

• Low df/dP,

• Mechanical resonances > 60 Hz;

• Good tunability;

• Less expensive.



Tools for SC structure simulations
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I. Field calculations:

 -Spectrum, (r/Q), G, 

 -Field enhancement factors

• HFSS (3D);

• CST(3D);

• Omega-3P (3D);

• Analyst (3D)

• COMSOL (3D)

II. Multipactoring (2D, 3D)

• Analyst;

• CST (3D);

• Omega-3P

III. Wakefield simulations (2D, 3D):

• GdfidL;

• PBCI;

• ECHO.

IV. Mechanical simulations:

Lorenz force and Lorenz factor,

Vibrations,

Thermal deformations.

a. ANSYS

b. COMSOL



Software packages for SRF cavity design
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CST Studio Suit Solvers
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Mesh Type

HEX X X X

TET X X

Sub-solvers

β = 1 

β < 1

- Lossless: AKS, TET

Complex: JDM

Solver Type

Direct X X X

Iterative X X



CST – Computer Simulation Technology
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1. What we are 
doing?

2. What tool do 
we need?

3. How to use 
the tool?

Features TemplatesApplications



CST Simulation Workflow
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1. Creation of the project 3D model
 - drawing in the CST GUI (takes time, full-parametrization, easy modification)

        - geometry import from 3rd parties CADs (quick, need special license, limited parametrization, 
potential mesh problem)

2. Choosing a proper solver
 - depends on the problem, available hardware, simulation time …

3. Setting boundary conditions 
 -  frequency, symmetries, ports, materials, beam excitation, temperature, …

4. Checking the mesh quality
 - generate and visualize the mesh, set initial mesh size, create sub-volumes and modify models 

  if needed, mesh fine-tuning (curvature order, surface approximation)

5. Solver fine-tuning
 - direct or iterative, parallelization, special settings, …

6. Running first simulation
 - check the results, set postprocessing steps, tune & modify the mesh, …

7. Setting optimization
 - set parameters sweep, define the goal function, simplify the model



CST Particle Studio Multipactor Simulation
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Secondary electron emission RF discharge or multipactor (MP) might be a serious obstacle 

for normal operation of SC cavities and couplers (simulation of SSR1 cavity for PIP-II).
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Cavity EM simulation Setup  particle sources Particle tracking

• Complex 3D multi-
sections cavity model 

• Precise surface fields
• SW&TW solutions
• Mesh matching with 

tracking module

• Advanced field emission 
model

• Emitters locations,  
numbers and phases

• Material properties

• Multi-particles 
approach & 
stochastic SE 
emission   

• Advanced statistics
- numbers 
- collisions 
- sec. emissions
- dissipations
- trajectories   

Post processing

G. Romanov, FNAL

S. Kazakov, FNAL



CST PS Incoherent Losses & Wakes Simulations
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Loss factor depends strongly on the σfield !

• fmax ~ c/σbunch

• for σbunch = 50μ, fmax < 6 THz

• fmax ~ c/a

• for a = 50mm, fmax < 6 GHz

Solve in TD

• computing wakefield    and 

wake potentials

Solve in FD

• loss factors calculation of 

individual cavity modes

HE electron linac 

(XFEL or LCLS-II)

Proton linac 

(PIP-II)

Incoherent losses introduced by radiated wakefield might be an essential part of the total 

cryolosses in the SC accelerating structure.



CST Particle Studio Dark Current Simulation
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Effect of dark current

• heat and RF loading of the 

cavity

• production of avalanches of 

secondary electrons

• accelerating to hundreds of MeV 

before being kicked out by down 

stream quadrupoles 

• originating electromagnetic 

cascade showers in the 

surrounding materials

Particle trajectories vs RF phase Particles distributions: 

a) radial , b)  angular  and c)  phase

Challenges of dark current simulations:

- initial broad angular, space and phase distribution

- realistic model of emitters (Uniform, Gaussian, Fouler-Nord.)

- influence of SE emission

- detailed statistics on lost and accelerated particles 



CST PS Loss Factor Simulation 
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Time Domain Frequency DomainTime Domain

Ultra-relativistic beam (β=1) 
Weakly-relativistic beam (β<0.9)
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• required memory  ~ (a/σz)
3 

• computation time    ~  (a/σz)
4

• long catch up distance ~ a2/2σz

Solution: Indirect methods

Highly-relativistic beam (β>0.9) 

Short bunches (σz < 1mm)

• Estatic  >> Wz

• Wrong convolution:
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Solution:  Two simulations to exclude Estatic*

HOM modes

• HOM spectrum above 
beam pipe cut-off  freq.
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Solution:  
Take modes with max R/Q,
Multi-cavity simulation

* Andrei Lunin et al., “Cavity Loss Factors for Non-
Relativistic Beam in the Project X Linac,” PAC2011, 
New York, March 28, 2011, TUP075



CST Design Studio Scattering Matrix Analysis
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ILC 9-cell Structure Decomposition



CST Design Studio Scattering Matrix Analysis
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Full Structure S-matrix Key features

• Fast analysis

• Precise frequency resolution 

• Easy phase manipulation

• Multi-structure chain simulation

▪ The components have to be non-resonant!  

▪ Leave the regular waveguide section!

▪ Use proper mode alignment!

Tips:



Comsol Multiphysics
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COMSOL. Frequency Sensitivity to Pressure in SSR
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Helium Vessel pressure surface

» Frequency shifts due helium pressure fluctuations (~few 
mbar)  df/dp  is a major issue in superconducting RF cavities

» Narrow BW cavities with high microphonics levels require 
more RF power

» Beam can be lost if sufficient reserve RF power to 
compensate for detuning is not available 

Piezos are 
used for fast 

tuning



COMSOL. Frequency Sensitivity to Pressure in SSR
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Frequency Sensitivity to Pressure in SSR
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Moving Mesh

• Solving for all domains

• Applying the proper 
prescribed and free mesh 
deformation/displacement

Nb cavity

RF Domain

Electromagnetic Waves

•Solving only for the RF domain

•Applying the prober boundary 
conditions

Solid Mechanics

• Solving only for the Cavity 
Vessel

• Applying the proper fixed 
constraints, symmetries, 
displacements, and 
boundary load

PMC

Fixed 
Constraint

Free 
Deformation

Symmetry 
Boundaries

Pressure 
Boundary 

Load

Stainless Steel Vessel



Elliptical cavity design
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df/dP optimizations of new design for end lever tuner
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Electromagnetic fields inside the cavity develop pressure on the cavity inside walls 
that is defined as

COMSOL. LFD simulations
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Lorentz forces exerted on the 650 MHz β=0.9 single cell cavity ahead with the radiation 
pressure values in mbar at the 3.5 MV cavity voltage. Deformation is exaggerated by 20000 
times

( )2 21

4
radP H E = −

Overall frequency shift will always be 
negative since the repulsive magnetic 
field forces and the attractive electric 
field forces both work together to 
decrease the resonance frequency of 
the deformed cavity, called LFD

Pressure exerted by the magnetic field is positive (push) pressure, while it is 
negative (pull) for the electric field



COMSOL. LFD simulations
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Spring Const 

[KN/mm]

LFD

 [Hz/(MV/m)^2]

Fixed -1.26

200 -1.36

100 -1.46

40 -1.65

20 -1.85

10 -2.14

5 -2.62

Free 0 -3.69

Blue: Niobium
Red: Ni-Ti
Green: Ti

Radiation pressure ( )2 2

0 0

1

4
P H E = − 2

accf Kl E =



COMSOL. Modal Analysis
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33 Hz

88 Hz

108 Hz

Modal frequencies of the 650 MHz 
β=0.9 cavity

▪ Modal eigen-frequencies of each cavity 
structure can be numerically calculated 
using a solid mechanics solver

▪ Any modification on the cavity structure 
would necessarily change the modal 
frequencies.  

▪ The frequency shift in the 
electromagnetic resonance frequency 
due to the excitation of a certain modal 
eigen-frequency could be computed 
knowing the energy of that eigen-
frequency.

▪ Moreover, we believe that the modal 
frequency will be affected by the liquid 
Helium filling the cavity during operation 



COMSOL. Modal Analysis
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HB650 MHz cavity



COMSOL. Modal Analysis
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COMSOL. Frequency tuning simulations
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94.8%

649.0937 MHz 96.9%

649.2468 MHz

-1.088 mm

Fixed

-1.35mm

ΔL=0.783 mm, =58%

Δf ~ 153.100 KHz

-0.305 mm



COMSOL. Thermal Analysis

7/16/2024T. Khabiboulline | SRF cavity design, RF measurements and tuning43

▪ Given the several models of Kapitza Resistance, we tried to use our 

experience with the third harmonic cavity to check which one is closer to 

measurements

▪ Mittag model looks the closest with quench field 126mT vs 120mT 

observed in measurements, thus it will be adopted

153

131 132

126

Kapitza Layer 
thickness is 0.5 
mm



SRF cavity production technology
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Parts: 
sheets, 
tubes

Parts
QC

Half cell 
forming

Iris 
welding

Dumbbell,
end ass.
RF QC

Equator 
welding

QC



Material quality control
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No texture: The difference in mechanical properties (Rm, Rp0,2, AL30) 

orthogonal and parallel to main rolling direction < 20% (cross rolling).

Technical Specification to Niobium Sheets for
XFEL Cavities

Concentration of 

impurities in ppm

Mechanical properties

Ta ≤ 500 H ≤ 2 RRR ≥ 300

W ≤ 70 N ≤ 10 Grain size ≈ 50 μm

Ti ≤ 50 O ≤ 10 Yield strength, σ0.2 50<σ0,2<100 

N/mm2 (Mpa)

Fe ≤ 30 C ≤ 10 Tensile strength > 100 N/mm2 (Mpa)

Mo ≤ 50 Elongation at break 30 %

Ni ≤ 30 Vickers hardness HV 10 ≤ 60



Material quality control
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Disks are cut from high purity niobium 
sheet and eddy current scanned for pits, 
scratches or inclusions of foreign materials

Discs with inclusions of foreign materials or 
damage are rejected

Eddy current scanning



Material quality control
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Material quality control
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Elliptical cavity production
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Elliptical cavity production
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Elliptical cavity production
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Elliptical cavity production
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3.9 GHz half cells and dumbbell measurement fixture



Elliptical cavity production
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3.9 GHz, 1.3 GHz and 650 MHz dumbbell measurement fixtures



Elliptical cavity production
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0 mode

Pi mode

L, mm F0, MHz F1, MHz dF, MHz

Measured 213.05 639.37 644.47 5.1

Expected 213.8 641.167 646.206 5.039

dF, MHz -1.797 -1.736

650 MHz beta 0.90 copper dumbbell

dF/dL2 ,MHz/mm

-1.125

L2 0 2 4

F, 
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649.
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169

Frequency vs. L2 length

Magnetic BC on iris side

0 2 4

0 644.194 642.14 640.193

2 644.62 642.552 640.593

4 644.972 642.894 640.924

0 2 4

0 0.000 -2.054 -4.001

2 0.426 -1.642 -3.601

4 0.778 -1.300 -3.270

dF/dL1 dF/dL2

0.223 -1.04

Electrical BC on both sides



Elliptical cavity production
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Cavity production steps:

-Eddy current scanning of Nb shits.

-Cut disk blanks with hole in the center

-Flow forming of half cell and trimming iris and equator area with extra length for 
tuning and welding shrinkage compensation. No extra length for a tuning in mid- 
cells. If pass visual inspection :

-Frequency and length measurements. Sensitivity of the frequency to extra length 
is 14 MHz/mm at iris and -55 MHz/mm at equator.

-EB welding of two half cell at iris to form dumbbell. Partual penetration welding 
from both sides. If pass visual inspection :

-Frequency and length measurements of the dumbbells. Both mode frequencies F0 
and Fpi measured 3 times: 1) without perturbation F0 and F1, 2) with perturbation 
in 1st half cell F01 and F11 3) with perturbation in 2nd half cell F02 and F12. 
Difference of the frequencies of two half cell can be calculated from these data:

 dF=F2-F1=(F01 - F11 +F12 –F02)/(F01 +F11- F02 -F12))*k*F0

Where k~4(Fpi - F0)/(Fpi + F0), for a 3rd harmonic cavity k~0.08 MHz

-Trimming calculations:

-Equator trimming

-Equator welding

-Mechanical and RF QC of the new cavity.

-Bulk BCP and 800C baking,

-RF tuning of the cavity

Dumbbell F vs Length, Pi-mode.

3855

3860

3865

3870

3875

3880

3885

39 39.2 39.4 39.6 39.8 40

Length, mm
F

, 
M

H
z

Long +0.76mm
Short +0.52 mm
Combo Dumbbell
FNAL2 Dumbbells
-30.4 MHz/mm line
Length, 'Long'
Length, 'Short'



Multi-cell cavity field flatness tuning
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“Equator”, radial tuning fixture“Iris”, axial tuning fixture



Multi-cell cavity field flatness tuning
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FNAL elliptical 9 cell cavity tuning procedure. This technique based on bead-pull 

measurements of field distribution on operating (pi-mode). Amplitudes of E-field 

in the center of each cell used for frequency of individual cells.

Normalized field distribution is uniform, Ai=1 for i=1,2, … 8, 9, if frequency of 

each cell are same. When frequency of the cell #n is shifted by dFn=1 kHz field 

distribution will change by dAi.

Perturbation of frequency of each will change field distribution:

Let us solve this equation  to find frequency perturbation from field distribution:

Where sensitivity coefficients matrix K calculated from HFSS simulations.

During RF tuning of the cavity we need to tune its operating mode frequency F9. 

Also we can not measure individual cell frequency but can measure F9. Tuning of 

cell #n by dFn shifts also cavity frequency by dF9~dFn/9. If design frequency is 

F90 tuning of the cell should be done by shifting operating mode frequency by:

This technique works best when field flatness of the cavity is close to ideal. 

Because it linear and based on small perturbations. Tuning is better to start with 

most perturbed cell. If field flatness still not acceptable the additional tuning cycle 

should be done.

9/)0( 999 ndFFFdF −−=

nini dFKdA *=

dFdFKKdAKdFKdA === −− *** 11 Before tuning. FF 65%, slope +28 %

After tuning. FF 98%, slope +0.64 %



Cavity cell centers measurements technique based on bead-pull
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We need to measure cavity alignment. Usually people measure it mechanically on the outside 

surface of the cavity. This measurements time consuming, needs additional equipment and not 

possible for a cavity welded to He vessel.

Calculations of the electrical center of the each cell of the cavity based on bead pull 

measurements. It includes next steps:

- Bead pull measurements setup allows positioning of the fishing line in the plane 

perpendicular to cavity axes Z. Initial position of the line is go through centers of beam 

flanges

- Field distribution measurements in several positions shifted in XZ plane on line parallel to 

cavity axes. Usually 5 measurements with displacements -2d, -d, 0, d, 2d.

- Calculations of field Anm maximum in each cell #n center and measurement #m.

- Calculations of electric cell center Xn for each cell #n as a position of 2nd order best fit line 

maximum. An(x)=A0-k(X-Xn)2.

- Similar calculations for YZ plane.

- At the end we have coordinates (Xn,Yn) of electric centers for each cell of the cavity.

- Cavity rotates by 180 degree around beam pipe flanges and measurements and calculations 

repeated. Combination of these two measurements allow us exclude error of initial 

positioning of fishing line.

)2

0

2

0H EkHk E −=



ICL Cavity Tuning Machine
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ICL Cavity Tuning Machine
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𝐸~ ∆ω



ICL Cavity Tuning Machine
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Electrical Tuning Model

Example Bead-Pull Frequency Data from a 9-Cell Tesla Style Cavity



ICL Cavity Tuning Machine
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Cavity Alignment



ICL Cavity Tuning Machine
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Laser-based alignment correction
 Frequency tuning of the cavity cell in the Cavity Tuning Machine based on deformation 

of the cell in axial direction. Deformation provided by three motorized Arms located 
around the cell in the plane perpendicular to cavity axes uniformly every 120 degrees.
Arm #1 is located on the top of the cell. Arm #2 is in the right side of the cavity, when 
we look from power coupler end of the cavity. Arm #3 is in the left side of the cavity in 
same view.
Each Arm ends with Jaw each side located in plane of one (of two) Irises of the cell. 
Jaw distance can be changed by stepper motor with gear box independently for each 
Jaw.
During the tuning Jaw distances change causing axial deformation of the cell. 
Frequency of the cell and cavity drops when distances decrease, and the frequency 
goes up when distances increases. Note: for safe operation Jaws can not move in 
opposite direction.
We need to redistribute Jaws motions to improve cavity alignment. Laser based Cavity 
Alignment Control System is used for this purpose. Beam emitted from Laser installed 
on Cavity Coupler end Beam Pipe Flange reflects from mirror installed on another end 
Beam Pipe Flange. Retuned laser beam image detected by camera installed on same 
flange as Laser. Any angular change between two Beam pipe flanges cause change of 
laser beam image spot position. Alignment conservation technique is based on keeping 
laser beam image spot position as close as possible to the initial position during cell 
tuning.
Another advantage of laser-based Cavity Alignment Control System is possibility to 
perform control during aligning of the cavity. It is necessary for a cavity with bad 
alignment originally, before tuning.
So we need a technique to control cavity alignment during frequency tuning. It will 
allow us to keep cavity alignment and even improve it.



HOM notch frequency tuning
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S21 power coupler to PU
S21 power coupler to HOMpu
S21 HOMc to PU

S21 power coupler to PU
Red curve |S21/S21|
Black curve|S21/S21|



HOM notch frequency tuning
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HOM notch frequency tuning
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Notch frequency tuning tool



HB650 β=0.9/0.92 cavity for PIP-II design 
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PIP-II Layout

Section Freq Energy (MeV) Cav/mag/CM Type

RFQ 162.5 0.03-2.1

HWR (opt=0.11) 162.5 2.1-10.3 8/8/1 HWR, solenoid

SSR1 (opt=0.22) 325 10.3-35 16/8/ 2 SSR, solenoid

SSR2 (opt=0.47) 325 35-185 35/21/7 SSR, solenoid

LB 650 (g=0.61) 650 185-500 33/22/11 5-cell elliptical, doublet

HB 650 (g=0.92) 650 500-800 24/8/4 5-cell elliptical, doublet



HB 650 MHz  Cavity Helium Vessel
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components:

1. Long Cylinder

2. Transition ring MC end

3. Transition ring FP end

4. Bellow assembly

5. Support lugs

6. Lifting lugs

7. Helium inlet

8. 2-phase pipe assembly

9. Tuner mounting lugs

10. Bellow restrains

11. Magnetic shielding 
(external)

Long Cylinder

Transition ring MC end

Transition ring FP end

Bellow assembly

Support lugs

Helium inlet

2-phase pipe assembly

Tuner Support

Lifting lugs



The Scope of EM-Mechanical Design
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• Minimize a sensitivity to microphonics due to He pressure 

fluctuations (df/dP) and mechanical vibrations

• Minimize a Lorentz Force Detuning (LFD) coefficient

• To keep the stiffness and tuning sensitivity at suitable level 

to allow for tuning.

• Keep provision for slow and fast tuner integration.

• Enough strength to withstand atmospheric pressure

• Dressed cavity has to be qualified in 5 different load 

conditions by stress analysis

1. Warm Pressurization

2. Cold operation at maximum pressure

3. Cool down and tuner extension

4. Cold operation at maximum pressure and LHe weight

5. Upset condition – Insulating and beam vacuum failure



Cavity stiffness simulations
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Young’s 

modulus 
293K/2K

Poisson 

ratio 
293K/2K

Niobium 105/118 0.38

Titanium 106/117 0.37

Niobium-
Titanium

62/68 0.33

F, N 1000

x1, mm 0.295

x2, mm 0.016

σ bellow, MPa 52

σ cavity, MPa 10



Stress analysis
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Stress analysis. Allowable Stresses (MPa)
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Allowable Stress (S) for materials Allowable Stress (0.6xS) for weld joints

Material 2 K 293 K 2 K 293 K

Nb 171 25 102.6 15

Ti-45Nb 156 156 93.6 93.6

Gr. 2Ti 319 99 191.4 59.4

Material

Stress Category

Pm PL Pm ( or PL ) + Pb Pm ( or PL ) + Pb  + Q

2 K 293K 2 K 293K 2 K 293K 2 K 293K

Nb 171 25 256.5 37.5 256.5 37.5 513 75

Ti-45Nb 156 156 234 234 234 234 468 468

Gr. 2Ti 319 99 478.5 148.5 478.5 148.5 957 297

Nb  Welds 102.6 15 154 22.5 154 22.5 308 45

Ti-45Nb  Welds 93.6 93.6 140.4 140.4 140.4 140.4 280.8 280.8

Gr. 2Ti  Welds 191.4 59.4 287 89 287 89 574 574

Note : The allowable  stresses have not been reduced by 0.8 (recommended by point 3.4.1.10 of TD-09-005,

           confirmed by Tom Peterson). For welds it has been reduced by factor of 0.6.

Pm = primary membrane stress; P L= primary local membrane stress Pb = primary bending stress

Q = secondary stress



Stress analysis. Linearized Stress Table (MPa)
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Location Pm Sa Pm + Pb Sa

A (Nb-Ti weld tuner end) 1.08 93.6 2.05 140.4

B (Bellow lower weld) 36 59.4 60 89

C (Bellow weld) 36.8 59.4 69.82 89

D (Bellow upper weld) 28.8 59.4 54.87 89

E (Nb weld at end cell) 4.46 15 5.53 30

F (Nb weld at Iris) 4.28 15 7 22.5

G (Nb material near 

stiffening ring)

5.66 25 12.4 37.5

H (Nb weld at equator) 6.33 15 11.62 22.5

I (Nb-Ti weld coupler end) 4.92 93.6 7.1 140.4



Simulation of stresses during production
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Cavity length 
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constrained 
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1 Cavity after dressing 1 1 1 0 0.00

2
Cavity leak check at the 

clean room
1 0 1 -3.83 -1.10

3
He Vessel leak check during 

CM assembly
1 1 0 0.014 -0.03

4
He Vessel pressure test 

during CM assembly
1 1 3.3 -0.03 0.06

5
He Vessel leak check during 

CM testing
1 0 0 -4.4 -1.10

6
He Vessel pressure test 

during CM assembly
1 0 3.3 -3.87 -1.01

5K 7
Start of cooling down CM or 

HTS
0 0 1.5 -0.02 0.04

2K 8 Operating condition 0 0 0.03 0 0.00

5K 9
Cold loss of vacuum accident
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LCLS-II Tuner Electro-Mechanical Design
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• Tuner must  tune cavity (slow and fast) and protect cavity/He 
Vessel system during  CM production cycle and  operation of  
the accelerator

• Tuner needs to fit the existing inventory of  cavities at FNAL. 
..”short-short” (cavity built for slim blade tuner for 
CM3/4/5…). 

• Active tuner components (electromechanical actuator& 
piezo-stack) need to be replaceable  through special ports;

• High reliability of  tuner components (electromechanical 
actuator and piezo-actuator);

• Tight requirements for slow/coarse & fast/fine tuning 
resolution → cavity has narrow bandwidth (F1/2~15Hz) and  
resonance control requirements Fpeak=10Hz  (or =1.5Hz)) 



LCLS-II Tuner Electro-Mechanical Design
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Slow Tuner frequency range  
nominal 250kHz	

maximum 450kHz	

Slow Tuner dimensional range  
nominal 0.75mm	

maximum 1.3mm	

Slow Tuner sensitivity   1-2Hz/step	

Fast Tuner frequency range   1kHz	

Fast Tuner dimensional range 3um	

Fast Tuner tuning resolution   1Hz	

Fast Tuner stroke resolution   3nm	

Fast Tuner response bandwidth  5kHz	

Min. tuner stiffness   30kN/mm	

Min. tuner mechanical resonance 5kHz	

Tuner operating condition 

insulated vacuum 

T=20-60K	

Slow Tuner/ electromechanical actuator lifetime 

(20 years) 

1000 spindle 

rotation	

Fast Tuner/ electromechanical actuator lifetime 

(20 years) 
4*109 pulses	



LCLS II Tuner Schematics
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Design of the LCLS II Tuner
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design included several features specific to requirements that electromechanical 
actuator and piezo-elements replaceable through special designated port



Details of FAST (piezo) Tuner design
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Encapsulated piezo designed and 
manufactured by Physik Instrumente 
(PI) per FNAL specifications.

Each capsule has inside two 
18*10*10mm PICMA piezos. Piezo 

preloaded with 800N. 



Forces/stroke on the cavity/He vessel system 
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Tuner Test results at HTS
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Tuner Test results at HTS
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Piezo Tuner Range
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High reliability of tuner components 
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2. Piezo actuator – encapsulated piezo made at PI Ceramics per FNAL 
specification for LCLS II project 
(Designated piezo lifetime program is underway at FNAL )

1. Phytron electromechanical Actuator (stepper motor/planetary gear/Ti 
spindle) (designed per FNAL specs in the frame of the Project X.)

Joint test (JLAB/FNAL) of production unit is underway at JLAB 



LCLS-II Tuner Summary
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➢ Design of the LCLS II prototype cryomodule Tuner is mature. 
Several small issues found during prototype assembly and 
testing were corrected. Questions/comments from previous 
reviews were addressed. 

➢ Tuner parameters, measured during tuner test at HTS, 
meet/exceed technical requirements specifications. 

➢ Reliability of the tuner is addressed by two measures: tuner is 
accessible through designated ports and the active 
components (electromechanical actuator& piezo-actuator) 
illustrated reasonable longevity 

➢ Preservation of the cavity Q0 with tuner (remnant magnetic 
field) will be tested in mid-March

➢ Procurement of long (~3 months) lead components (stepper 
motor and piezo-actuators) can be started



Power coupler design

7/16/2024T. Khabiboulline | SRF cavity design, RF measurements and tuning86




















++



+



= 2
0

2
02

)sin

)(

(tan)cos

)(

1(

)(4
b

cav

bL

b

cav

bL

L

cav
g

V

IQ
Q

R

V

IQ
Q

R

Q
Q

R

V
P 

00

0 22tan
f

f
QQ LL


−=

−
−=






TTF-3 Coupler



Power coupler design

7/16/2024T. Khabiboulline | SRF cavity design, RF measurements and tuning87



Power coupler design
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5K cooling here

80K cooling here

Beam pipe

Warm window

Door-knob 
conversion

Cold window

Vacuum port

TRISTAN Type Coaxial Disk Ceramic

80 K           5 K           2 K

Static Loss         5 W           1.1 W       0.05 W

Dynamic Loss   3 W           0.2 W       0.03 W

Qext = 2.0 x 106

Prf = 350 kW   



Power coupler design
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Power coupler design
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Components for 

High Power Test Stand

Input Couplers Doorknobs

Coupling Waveguides



Power coupler design
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Capacitive-coupling Coupler



Power coupler high power tests
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Power coupler high power tests
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325 MHz coupler
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Parameter Value

Frequency 325 MHz

Pass band (S11<0.1) > 1 MHz

Operating power (CW) 25 kW

HV bias ~ 2 kV

P, 

kW

2K / Pl, 

W

15K / Pl, 

W 

125K / 

Pl, W 

0 0.06 / 

52

0.58 / 

151

2.02 / 40

3 0.10 / 

86

0.81 / 

211 

2.35 / 47

6 0.15 / 

129

1.03 / 

268

2.68 / 54

20 0.35 / 

301

2.07 / 

538

4.25 / 85

30 0.50 / 

430

2.82 / 

733 

5.36 / 

107



RF kick caused by the input and HOM couplers
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RF voltage:
U=(2PZ)1/2, Z–coax impedance;
for P=300 kW and Z≈70 Ohms 
U ≈ 6 kV
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Beam Diagnostics
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• Beam Position and Phase Measurement System 

     (button –type or stripline BPMs)

• Beam Loss Measurement System 

     (ionization chambers).

• Beam Intensity Measurement System 

     (DC current transformers and beam toroids)

• Beam Transverse Profile Measurement System 

     (traditional wire scanner or photo-disassociation of H- by 
laser radiation) 

• Beam Transverse Emittance Measurements 
     (Allison-Type Emittance Scanners or Laser-Based Emittance
     Scanners)



Beam Diagnostics
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ring pickup

BPMs are mounted to the focusing elements: 



Summary
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❑ RF design of the cavity is based on 
• the accelerator operation regime – pulsed or CW;
• the beam power and energy;
• the beam quality requirements.  

❑ RF cavity parameter optimization includes:
• frequency,

• RT versus SRF

• operating temperature choice for SRF,

• optimal gradient,

• cavity shape optimization,

• number of cells, 

• cell-to-cell coupling,

• HOM extraction,

• RF power coupling

❑ RF linac is self-consistent system and its subsystem are interconnected; 

therefore, the RF cavity design is an iterative process.

❑ RF cavity design includes:

• RF parameter optimization;

• MP analysis

• Mechanical optimization. 



Summary
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❑ The SRF cavity component design includes: 
• the input power design;
• the cavity tuner design;
• The He vessel design.

❑ The SRF cavity manufacturing process contains a lot of operations and requires high 
technological culture:

• material quality control;
• cell manufacturing and pre-tune;
• final assembly;
• surface processing;
• welding into the He vessel;
• component assembly;
• cavitystring assembly;
• cryo-moduel assembly;
• alignment

❑ The cryo-module:
• Contains the insulating vacuum.
• Serves as the major structural element to which all other systems are attached to the 

accelerator tunnel floor.
• Serves as a pressure containment vessel in the event of a failure in an internal cryogen 

line.



Bead pull measurements of PIP-II RFQ

7/16/2024T. Khabiboulline | SRF cavity design, RF measurements and tuning100

Accelerating H- from 300 keV to 2.1 MeV



Bead pull measurements of PIP-II RFQ
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Tuner at one end of the RFQ. 50 mm 

protrusion, frequency shift is 45 kHz.

Module #2 was manufactured before other modules



Bead pull measurements of PIP-II RFQ
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Bead pull measurements of PIP-II RFQ
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Sweeping vane tip profile along modulation curve.



Bead pull measurements of PIP-II RFQ
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D=10mm, 
(30,30)

D=2mm, 
(3.5,3.5)

D=4mmD=3mm

D=3mm, 
(1.5,1.5)



Bead pull measurements of PIP-II RFQ
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Bead pull diagram
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Bead pull measurements of PIP-II RFQ
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Bead-pull setup on RFQ Module #2
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Program allow to position bead in any location near cavity center and measure field flatness.

Multiple passes and post processing are included.
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• Quadrant measurements: 

single quadrants 1 to 4 and 

average filed amplitude 

along RFQ length @ 30 

mm radial offset.

• First bead pull 

measurement before 

tuning, FF approximately 

80% for avg.
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• After final FF tuning: Freq= 162.443 MHz FF=98%
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HB cavity for the PIP II project has the following parameters:
• Frequency:                 650 MHz;
• R/Q:                             630 Ohm;
• G:                                 255 Ohm;
• Voltage:                      20 MV;
• Surface resistance:   8.5 nOHm 

Estimate: 
• Wall loss;
• Stored energy.
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Coaxial power coupler
1. Given:

1. External conductor with outer diameter D1, SS wall thickness d1, Cu coating thickness d2
2. Length L, internal conductor diameter D2
3. RF power P in TW regime.
4. One end temperature 300K other end 4K. 70K heat sink in the middle
5. Thermal conductivity p1 for SS and p2 for copper not depend on temperature.
6. Electrical surface resistance SS Rs1 for and Cu Rs2
7. Thermal radiation is negligible. Attenuation of RF power is negligible
8. Efficiency of 70 K cooler is 5%, efficiency of 4K cooler is 0.5%

2. Assumptions:
1. Thermal radiation is negligible. Vacuum.
2. Attenuation of RF power is negligible.

1. Questions:
1. What heat power flow at 70K and 4K intercepts at P=0 W?
2. What is power consumption at cryoplant at P=0 W?
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