

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Engineering for Particle Accelerators

Timergali Khabiboulline U.S. Particle Accelerator School (USPAS) SRF cavity design, RF measurements and tuning 16 July 2024

Engineering for Particle Accelerators

	Monday	Tuesday
9:00-11:30	Vyacheslav (Slava) Yakovlev, The fundamentals of large- scale linear accelerator	Timergali Khabiboulline, SRF cavity EM and mechanical design, RF
11:30-13:00	engineering	measurements and tuning
13:00-17:30	Vyacheslav (Slava) Yakovlev, The fundamentals of large- scale linear accelerator engineering (continuation)	Timergali Khabiboulline, SRF cavity EM and mechanical design, RF measurements and tuning (continuation)
19:00-21:00	Study	Study

Engineering for Particle Accelerators

	Wednesday	Thusday
9:00-11:30	Thomas Nicol, Mechanical Engineering in Superconducting Magnet and	Miao Yu, Engineering for Particle Accelerators - Magnets
11:30-13:00	Lunch	Lunch
13:00-17:30	Thomas Nicol, Mechanical Engineering in Superconducting Magnet and RF Cryomodule Design (continuation)	Miao Yu, Engineering for Particle Accelerators – Magnets (continuation)
19:00-21:00	Study	Study

3 T. Khabiboulline | SRF cavity design, RF measurements and tuning

‡Fermilab

Engineering for Particle Accelerators

1Angelo, Joseph	LBNL and Indiana University
2Chen, Jing	SLAC
3 Fletcher, Ethan	Michigan State University
4 Geelhoed, Michael	Fermilab
5 Helsper, Josh	Fermilab
6Hlavenka, Joshua	Argonne National Lab and Indiana University
7Intwala, Nishi	Indiana University and LBNL
8 Kim, Kuktae	SLAC
9Li, Guangjiang	Brookhaven National Lab
10 Loftin, Evan	Los Alamos National Lab
11 Martinic, Kean	Indiana University and Idaho State University
12 McIntyre, Megan	Argonne National Lab and DePaul University
13 Mujica-Schwahn, Natalie	Honeywell International Inc.
14 Olander, Michael	Fermilab and Indiana University
15 Tutt, Patrick	Michigan State University

SRF Cavities Applications

Modern SRF cavities cover wide range of particles beta (0.05..1), operating frequencies (0.072..4 GHz) and beam currents (1mA..100mA, CW & Pulsed)

Development of SC accelerating structures

Problems of Superconducting Particle Accelerators

- Acceleration efficiency
 - max R/Q & min surface field enhancement factors (electric & magnetic)
- High Order Modes (HOMs) dumping
 - incoherent effect (loss factors, cryogenic losses)
 - coherent effects (emittance dilution, cryo-losses)
 - collective effects (transverse & longitudinal beam instabilities)
- Operation with small beam current
 - narrow cavity bandwidth & microphonics
- Field Emission
 - multipactor & dark current
- High Gradient pulsed operation
 - Lorentz force detuning
- Input Power Coupler
 - CW operation (min RF loss & static heat load)
- Beam Instrumentation
 - Cold Beam Position Monitor (low & high relativistic beam)

🔁 Fermilab

SRF cavity design

SRF cavity is a complicated electro-mechanical assembly and consist of:

- bare cavity shell with power and HOM couplers
- stiffening elements (ring, bars)
- welded LHe vessel
- frequency tuners, slow and fast
- vacuum ports

The design of SRF cavity requires a complex, self consistent electro-mechanical analysis in order to minimize microphonics and/or Lorentz force detuning phenomena and preserving a good cavity tunability simultaneously

8 T. Khabiboulline | SRF cavity design, RF measurements and tuning

🛟 Fermilab

Main characteristics of SC acceleration structure

(r/Q) determines the relationship between the acceleration gradient and energy stored in the accelerating structure W per unit length:

🛠 Fermilab

Main characteristics of SC acceleration structure

Coupling coefficient:

$$k_{c} = 2 \frac{f_{\pi} - f_{0}}{f_{\pi} + f_{0}};$$

- □ High Order Modes (HOM):
- a) Monopole HOM spectrum losses, bunch-to-bunch energy spread;
- b) Dipole HOM spectrum transverse kick, beam emittance dilution.

HOM frequencies, (r/Q)s and loaded Q-factors are critical, and are the subject of the structure optimization.

• The structure cell geometry:

Constrains: -low field enhancement factors; -no multipacting. Elliptical shape for the cell and the iris.

Examples: -TESLA structure; -Low Loss structure; -Re-Entrant structure.

Main characteristics of SC acceleration structure

 \Box Resonance frequency of the operating mode f_0 ;

Accelerating gradient *E*;

□ Shunt impedance r per unit length; Shunt impedance is relationship between the acceleration gradient and dissipated power P per unit length of the structure. P is the sum of Ohmic losses in the structure P_{Ohm} and the power radiated through the coupling ports P_{rad} .

🚰 Fermilab

7/16/2024

 $r = \frac{E^2}{P}$ $\square \text{ Unloaded quality factor } Q_0 \text{ and geometry factor G}$ $Q_0 = \frac{\omega W}{P_{Ohm}} = \frac{\omega \mu_0 \int |H|^2 dV}{R_s \int |H|^2 dS} \equiv \frac{G}{R_s},$ $\frac{\omega \mu_0 \int |H|^2 dV}{\int V_s |H|^2 dS} = \frac{R_s \text{ is the surface resistance, } W \text{ is the energy stored in the structure per unit length.}$

High Order modes

• HOM extraction/damping.

Criteria:

Transverse modes: beam emittance dilution;Longitudinal modes: power losses, field

enhancement, bunch-to-bunch energy spread.

Coaxial loop coupler for superconducting TESLA cavities

Trapped modes.

The end cells are to be optimized in order to prevent the field distribution for HOMs having small field in the end cavities, socalled trapped modes. For the trapped modes it is a problem to reduce the loaded Q-factor to acceptable level.

Lorentz Force Detuning

14 T. Khabiboulline | SRF cavity design, RF measurements and tuning

Design approaches

•Aperture choice:

•Smaller aperture \rightarrow smaller field enhancement factors, higher R/Q;

•Limitations:

- o beam losses,
- o field flatness,
- o mechanical stability,
- o surface processing,
- Q_{load} (coupling to the main coupler)
- HOMs (trapped modes)
- Wakes (electron accelerators)

SNS (805 MHz): HIPPI (704 MHz): PIP II (650 MHz): 2a=86mm (β=0.61), 2a/λ = 0.23 2a=98mm (β=0.81), 2a/λ = 0.26 2a=80mm (β=0.47), 2a/λ = 0.19 2a=83mm (β=0.61), 2a/λ = 0.18 2a=100 mm (β=0.9), 2a/λ = 0.22

Electromagnetic optimization

15 T. Khabiboulline | SRF cavity design, RF measurements and tuning

Mechanical stiffness

Bare cavity

Dressed cavity

He vessel

‡Fermilab

7/16/2024

df/dP for stiffening ring R = 90 mm vs. 100 mmBellows radius of OD - 125 mm

LFD minimization

LFD minimization

Blade Tuner – scaled ILC:

- High df/dP,
- Insufficient tuning efficiency;

Tuner options

Lever Tuner design:

- Low df/dP,
- Mechanical resonances > 60 Hz;
- Good tunability;
- Less expensive.

Tools for SC structure simulations

- I. Field calculations:
 - -Spectrum, (r/Q), G, β -Field enhancement factors
 - HFSS (3D);
 - CST(3D);
 - Omega-3P (3D);
 - Analyst (3D)
 - COMSOL (3D)
- II. Multipactoring (2D, 3D)
 - Analyst;
 - CST (3D);
 - Omega-3P
- III. Wakefield simulations (2D, 3D):
 - GdfidL;
 - PBCI;
 - ECHO.
- IV. Mechanical simulations:
 - Lorenz force and Lorenz factor, Vibrations,

Thermal deformations.

- a. ANSYS
- b. COMSOL

21 T. Khabiboulline | SRF cavity design, RF measurements and tuning

Software packages for SRF cavity design

Software for eigenmode EM simulation.

	OMEGA3P	COMSOL*	CST*		SLANS	HFSS*
Domain	3D	2D, 3D	3D		2D	3D
Curved elements	V	V	-	٧	٧	٧
Mesh type	Tetra	Tetra	Hex	Tetra	Quad	Tetra
Complex solver	V	٧	٧	-	-	V
Parallel computing	V	V	٧	٧	-	٧
H-field enhancement ^{**}	-	-	-		V	-

Fermilab

7/16/2024

* commercial software

** weighted residual method is applied in order to improve field calculations.

CST Studio Suit Solvers

	CST PARTICLE STUDIO [®]	CST MPHYSICS [®] STUDIO	CST MICROWAVE STUDIO [®]			
	PIC Solver 🔡	Thermal Stationary Solver 🔡	Time Domain Solver 🔡			
	Gun Solver & Particle Tracking 🔡	Thermal Transient Solver 🌃	Frequency Domain Solver 🔡			
	Wakefield Solver 🔤	Structural Mechanical Solver 🗟	Eigenmode Solver 💕			
Mesh Type						
HEX 💽	Х	X	Х			
TET		X	Х			
Sub-solvers						
	$\beta = 1$	-	Lossless: AKS, TET			
	β < 1		Complex: JDM			
Solver Type						
Direct	X	X	X			
Iterative		X	Х			
			😤 Fermilal			
23 T. Khabibo	ulline SRF cavity design, RF meas	surements and tuning	7/16/2024			

23 T. Khabiboulline | SRF cavity design, RF measurements and tuning

CST – Computer Simulation Technology

24 T. Khabiboulline | SRF cavity design, RF measurements and tuning

CST Simulation Workflow

1.	 Creation of the project 3D model drawing in the CST GUI (takes time, full-parametrization, easy modification) geometry import from 3rd parties CADs (quick, need special license, limited parametrization, potential mesh problem) 	
2.	Choosing a proper solver	
	- depends on the problem, available hardware, simulation time	
3.	Setting boundary conditions	
	- frequency, symmetries, ports, materials, beam excitation, temperature,	
4.	Checking the mesh quality	
	 generate and visualize the mesh, set initial mesh size, create sub-volumes and modify models if needed, mesh fine-tuning (curvature order, surface approximation) 	
5.	Solver fine-tuning	
	- direct or iterative, parallelization, special settings,	
6.	Running first simulation	
	 check the results, set postprocessing steps, tune & modify the mesh, 	
7.	Setting optimization	
	- set parameters sweep, define the goal function, simplify the model	
	🛟 Fermila	ıb

CST Particle Studio Multipactor Simulation

G. Romanov, FNAL	For the set of the set		
S. Kazakov, FNAL	1.8mm		MP in ILC cavity Dependance on matrial models
Cavity EM simulation	Setup particle sources	Particle tracking	Post processing
 Complex 3D multi- sections cavity model Precise surface fields SW&TW solutions Mesh matching with tracking module 	 Advanced field emission model Emitters locations, numbers and phases Material properties 	 Multi-particles approach & stochastic SE emission 	 Advanced statistics numbers collisions sec. emissions dissipations trajectories

Secondary electron emission RF discharge or multipactor (MP) might be a serious obstacle for normal operation of SC cavities and couplers (simulation of SSR1 cavity for PIP-II).

26 T. Khabiboulline | SRF cavity design, RF measurements and tuning

7/16/2024

Fermilab

CST PS Incoherent Losses & Wakes Simulations

Incoherent losses introduced by radiated wakefield might be an essential part of the total cryolosses in the SC accelerating structure.

27 T. Khabiboulline | SRF cavity design, RF measurements and tuning

7/16/2024

🚰 Fermilab

CST Particle Studio Dark Current Simulation

Particle trajectories vs RF phase

Gun Solver & Particle Tracking 🔤

Effect of dark current

- heat and RF loading of the cavity
- production of avalanches of secondary electrons
- accelerating to hundreds of MeV before being kicked out by down stream quadrupoles
- originating electromagnetic cascade showers in the surrounding materials

Particles distributions: a) radial , b) angular and c) phase

🚰 Fermilab

7/16/2024

Challenges of dark current simulations:

- initial broad angular, space and phase distribution
- realistic model of emitters (Uniform, Gaussian, Fouler-Nord.)
- influence of SE emission
- detailed statistics on lost and accelerated particles

CST PS Loss Factor Simulation

New York, March 28, 2011, TUP075

7/16/2024

🛠 Fermilab

CST Design Studio Scattering Matrix Analysis

30 T. Khabiboulline | SRF cavity design, RF measurements and tuning

CST Design Studio Scattering Matrix Analysis

Tips:

- The components have to be non-resonant!
- Leave the regular waveguide section!
- Use proper mode alignment!

Key features

- Fast analysis
- Precise frequency resolution
- Easy phase manipulation
- Multi-structure chain simulation

Comsol Multiphysics

Multiphysics Software Product Suite

4 ()) Global Definitions

32 T. Khabiboulline | SRF cavity design, RF measurements and tuning

COMSOL. Frequency Sensitivity to Pressure in SSR

- » Frequency shifts due helium pressure fluctuations (~few mbar) df/dp is a major issue in superconducting RF cavities
- » Narrow BW cavities with high microphonics levels require more RF power
- » Beam can be lost if sufficient reserve RF power to compensate for detuning is not available

Helium Vessel pressure surface

Piezos are used for fast tuning

COMSOL. Frequency Sensitivity to Pressure in SSR

34 T. Khabiboulline | SRF cavity design, RF measurements and tuning

Frequency Sensitivity to Pressure in SSR

Elliptical cavity design

df/dP optimizations of new design for end lever tuner

HB650 MHz cavity

36 T. Khabiboulline | SRF cavity design, RF measurements and tuning

Regular stiffening ring
COMSOL. LFD simulations

Electromagnetic fields inside the cavity develop pressure on the cavity inside walls that is defined as

$$P_{rad} = \frac{1}{4} \left(\mu \left| H \right|^2 - \varepsilon \left| E \right|^2 \right)$$

Pressure exerted by the magnetic field is positive (push) pressure, while it is negative (pull) for the electric field

Overall frequency shift will always be negative since the repulsive magnetic field forces and the attractive electric field forces both work together to decrease the resonance frequency of the deformed cavity, called LFD

7/16/2024

🛟 Fermilab

Lorentz forces exerted on the 650 MHz β =0.9 single cell cavity ahead with the radiation pressure values in mbar at the 3.5 MV cavity voltage. Deformation is exaggerated by 20000 times

-15

▼ -15.135

COMSOL. LFD simulations

COMSOL. Modal Analysis

- Modal eigen-frequencies of each cavity structure can be numerically calculated using a solid mechanics solver
- Any modification on the cavity structure would necessarily change the modal frequencies.
- The frequency shift in the electromagnetic resonance frequency due to the excitation of a certain modal eigen-frequency could be computed knowing the energy of that eigenfrequency.
- Moreover, we believe that the modal frequency will be affected by the liquid Helium filling the cavity during operation

7/16/2024 **Fermilab**

COMSOL. Modal Analysis

40 T. Khabiboulline | SRF cavity design, RF measurements and tuning

COMSOL. Modal Analysis

Mechanical resonances HB650 MHz dressed cavity with tuner

COMSOL. Frequency tuning simulations

COMSOL. Thermal Analysis

- Given the several models of Kapitza Resistance, we tried to use our experience with the third harmonic cavity to check which one is closer to measurements
- Mittag model looks the closest with quench field 126mT vs 120mT observed in measurements, thus it will be adopted

SRF cavity production technology

Technical Specification to Niobium Sheets for XFEL Cavities

Concentration of impurities in ppm			of m	Mechanical properties		
Та	≤ 500	Н	≤ 2	RRR	≥ 300	
W	≤ 70	Ν	≤ 10	Grain size	≈ 50 µm	
Ti	≤ 50	0	≤ 10	Yield strength, $\sigma_{0.2}$	50<σ0,2<100 N/mm² (Mpa)	
Fe	≤ 30	С	≤ 10	Tensile strength	> 100 N/mm ² (Mpa)	
Мо	≤ 50			Elongation at break	30 %	
Ni	≤ 30			Vickers hardness HV 10	≤ 60	

No texture: The difference in mechanical properties (Rm, Rp0,2, AL30) orthogonal and parallel to main rolling direction < 20% (cross rolling).

45 T. Khabiboulline | SRF cavity design, RF measurements and tuning

🚰 Fermilab

Material quality control

Disks are cut from high purity niobium sheet and eddy current scanned for pits, scratches or inclusions of foreign materials

Discs with inclusions of foreign materials or damage are rejected

Material quality control

Example of the Nb sheet eddy current scanning test. Arrow indicates the suspicious spot.

SURFA (Synchrotron Radiation Fluorescence Analysis). Spectrum of K-lines at the spot area (dashed line) in comparison with spot free area (full line).

🛠 Fermilab

7/16/2024

The spot was identified as an inclusion of foreign material. Cu and Fe signal has been observed in the SURFA spectrum in the spot area.

Material quality control

Development of SQUID based scanning system for testing of niobium sheets

An excitation coil produces eddy currents in the sample, whose magnetic field is detected by the SQUID.

48

Prototype of SQUID based scanning system for niobium sheets (in work)

7/16/2024

🛟 Fermilab

Fabrication: Conventional fabrication (deep drawing and EB welding of fine grain Nb). Experiences of ca. 20 years of industrial cavity fabrication are available

🛠 Fermilab

7/16/2024

Important: clean conditions on all steps shape accuracy, preparation and EB welding

51 T. Khabiboulline | SRF cavity design, RF measurements and tuning

‡ Fermilab 7/16/2024

MEASURING OF DUMBELL

3.9 GHz half cells and dumbbell measurement fixture

3.9 GHz, 1.3 GHz and 650 MHz dumbbell measurement fixtures

🗣 🕻 Fermilab

Frequency vs. L₂ length Magnetic BC on iris side

L2	0	2	4
F,	649.	647.	645.
MHz	493	273	169

-1.125

Electrical BC on both sides

L2 el. L1 F1(X,Y,2) F2(X,Y,2) 49.92. 288.41. 183.9

	0		2	4	
0	644.194	64	2.14	640.193	
2	644.62	642	2.552	640.593	
4	644.972	642	2.894	640.924	
	0		2	4	
0	0.000	-2	.054	-4.001	
2	0.426	-1	-1.642 -3.601		
4	0.778	-1	-1.300 -3.270		
	dF/dL1		(dF/dL2	
	0.223		-1.04		

650 MHz beta 0.90 copper dumbbell									
L, mm F0, MHz F1, MHz dF, MHz									
Measured 213.05 639.37 644.47 5.1									
Expected 213.8 641.167 646.206 5.039									
dF, MHz		-1.797	-1.736						

7/16/2024

‡ Fermilab

Cavity production steps:

-Eddy current scanning of Nb shits.

-Cut disk blanks with hole in the center

-Flow forming of half cell and trimming iris and equator area with extra length for tuning and welding shrinkage compensation. No extra length for a tuning in mid-cells. If pass visual inspection :

-Frequency and length measurements. Sensitivity of the frequency to extra length is 14 MHz/mm at iris and -55 MHz/mm at equator.

-EB welding of two half cell at iris to form dumbbell. Partual penetration welding from both sides. If pass visual inspection :

-Frequency and length measurements of the dumbbells. Both mode frequencies F_0 and F_{pi} measured 3 times: 1) without perturbation F0 and F1, 2) with perturbation in 1st half cell F_{01} and F_{11} 3) with perturbation in 2nd half cell F_{02} and F_{12} . Difference of the frequencies of two half cell can be calculated from these data:

 $dF = F_2 - F_1 = (F_{01} - F_{11} + F_{12} - F_{02})/(F_{01} + F_{11} - F_{02} - F_{12})) * k * F0$

Where $k \sim 4(F_{pi} - F_0)/(F_{pi} + F_0)$, for a 3rd harmonic cavity k~0.08 MHz

-Trimming calculations:

-Equator trimming

-Equator welding

-Mechanical and RF QC of the new cavity.

-Bulk BCP and 800C baking,

-RF tuning of the cavity

Multi-cell cavity field flatness tuning

"Iris", axial tuning fixture

"Equator", radial tuning fixture

7/16/2024

‡Fermilab

Multi-cell cavity field flatness tuning

FNAL elliptical 9 cell cavity tuning procedure. This technique based on bead-pull measurements of field distribution on operating (pi-mode). Amplitudes of E-field in the center of each cell used for frequency of individual cells.

Normalized field distribution is uniform, Ai=1 for i=1,2, ... 8, 9, if frequency of each cell are same. When frequency of the cell #n is shifted by dFn=1 kHz field distribution will change by dAi.

$$dA_i = K_{in} * dF_n$$

Perturbation of frequency of each will change field distribution:

Let us solve this equation to find frequency perturbation from field distribution:

$$dA = K * dF \Longrightarrow K^{-1} * dA = K^{-1}K * dF = dF$$

Where sensitivity coefficients matrix K calculated from HFSS simulations.

During RF tuning of the cavity we need to tune its operating mode frequency F₉. Also we can not measure individual cell frequency but can measure F₉. Tuning of cell #n by dFn shifts also cavity frequency by dF₉~dFn/9. If design frequency is F₉0 tuning of the cell should be done by shifting operating mode frequency by:

$$dF_9 = (F_9 0 - F_9 - dF_n) / 9$$

This technique works best when field flatness of the cavity is close to ideal. Because it linear and based on small perturbations. Tuning is better to start with most perturbed cell. If field flatness still not acceptable the additional tuning cycle should be done.

Before tuning. FF 65%, slope +28 %

After tuning. FF 98%, slope +0.64 %

Cavity cell centers measurements technique based on bead-pull

We need to measure cavity alignment. Usually people measure it mechanically on the outside surface of the cavity. This measurements time consuming, needs additional equipment and not possible for a cavity welded to He vessel.

Calculations of the electrical center of the each cell of the cavity based on bead pull measurements. It includes next steps:

- Bead pull measurements setup allows positioning of the fishing line in the plane perpendicular to cavity axes Z. Initial position of the line is go through centers of beam flanges

- Field distribution measurements in several positions shifted in XZ plane on line parallel to cavity axes. Usually 5 measurements with displacements -2d, -d, 0, d, 2d.

- Calculations of field Anm maximum in each cell #n center and measurement #m.

- Calculations of electric cell center Xn for each cell #n as a position of 2^{nd} order best fit line maximum. An(x)=A0-k(X-Xn)^2.

- Similar calculations for YZ plane.

- At the end we have coordinates (Xn,Yn) of electric centers for each cell of the cavity.

- Cavity rotates by 180 degree around beam pipe flanges and measurements and calculations repeated. Combination of these two measurements allow us exclude error of initial positioning of fishing line.

$$\Delta \varphi = k_{\rm H} \mu_0 H^2 - k_E \varepsilon_0 E^2)$$

🛟 Fermilab

$$\frac{\Delta\omega}{\omega_0} = \frac{\Delta U}{U} = -\frac{\pi r^3}{U} \left[\varepsilon_0 \left(\frac{\varepsilon_r - 1}{\varepsilon_r + 2} \right) E_0^2 + \mu_0 \left(\frac{\mu_r - 1}{\mu_r + 2} \right) H_0^2 \right]$$

$$\frac{\Delta\omega}{\omega_0} = \frac{1}{2Q_I} \tan\Phi$$

Electrical Tuning Model

Porturbod	Mode										
Cell	π/9	2π/9	3π/9	4π/9	5π/9	6π/9	7π/9	8π/9	π		
None	1272962627	1274957050	1278058814	1282360406	1286719290	1291034246	1294192355	1296275920	1297214369		
1	1272959699	1274949285	1278047078	1282343291	1286695334	1290996581	1294136536	1296224176	1297205203		
2	1272939491	1274907939	1278012098	1282330706	1286709481	1291034246	1294177869	1296239536	1297205472		
3	1272924645	1274916603	1278054186	1282348121	1286674373	1291000233	1294191942	1296245084	1297200897		
4	1272915218	1274947447	1278037944	1282313655	1286718116	1290998462	1294169950	1296259744	1297196374		
5	1272912506	1274954947	1278008131	1282359819	1286670529	1291034241	1294151821	1296272762	1297192563		
6	1272923849	1274929386	1278051897	1282310247	1286716636	1290998492	1294164774	1296275168	1297185955		
7	1272938364	1274907219	1278040820	1282355751	1286676137	1291000182	1294190354	1296265922	1297181903		
8	1272952642	1274921183	1278006846	1282322376	1286706288	1291034210	1294182137	1296251275	1297179711		
9	1272961664	1274951633	1278046252	1282339175	1286688707	1290997073	1294153570	1296241250	1297179205		
None	1272962524	1274957210	1278058803	1282360435	1286719319	1291034246	1294192366	1296275951	1297214419		

Example Bead-Pull Frequency Data from a 9-Cell Tesla Style Cavity

7/16/2024 **Fermilab**

Cavity Alignment

7/16/2024

Laser-based alignment correction

Frequency tuning of the cavity cell in the Cavity Tuning Machine based on deformation of the cell in axial direction. Deformation provided by three motorized Arms located around the cell in the plane perpendicular to cavity axes uniformly every 120 degrees. Arm #1 is located on the top of the cell. Arm #2 is in the right side of the cavity, when we look from power coupler end of the cavity. Arm #3 is in the left side of the cavity in same view.

Each Arm ends with Jaw each side located in plane of one (of two) Irises of the cell. Jaw distance can be changed by stepper motor with gear box independently for each Jaw.

During the tuning Jaw distances change causing axial deformation of the cell. Frequency of the cell and cavity drops when distances decrease, and the frequency goes up when distances increases. Note: for safe operation Jaws can not move in opposite direction.

We need to redistribute Jaws motions to improve cavity alignment. Laser based Cavity Alignment Control System is used for this purpose. Beam emitted from Laser installed on Cavity Coupler end Beam Pipe Flange reflects from mirror installed on another end Beam Pipe Flange. Retuned laser beam image detected by camera installed on same flange as Laser. Any angular change between two Beam pipe flanges cause change of laser beam image spot position. Alignment conservation technique is based on keeping laser beam image spot position as close as possible to the initial position during cell tuning.

Another advantage of laser-based Cavity Alignment Control System is possibility to perform control during aligning of the cavity. It is necessary for a cavity with bad alignment originally, before tuning.

So we need a technique to control cavity alignment during frequency tuning. It will allow us to keep cavity alignment and even improve it.

HOM notch frequency tuning

S21 power coupler to PUS21 power coupler to HOMpuS21 HOMc to PU

S21 power coupler to PU Red curve |S21/S21| Black curve |S21/S21|

HOM notch frequency tuning

65 T. Khabiboulline | SRF cavity design, RF measurements and tuning

‡ Fermilab 7/16/2024

HOM notch frequency tuning

Notch frequency tuning tool

HB650 β=0.9/0.92 cavity for PIP-II design

PIP-II Layout

IS LEBT	RFQ	MEBT	β=0.11	β =0.22	β =0.47	β =0.61	β =0.92	
←	- RT -		~		— SC —			
$ \rightarrow $	-			←	\rightarrow	-		
DC 0.03 Me\	/ 0.0	162.5 MH 03 -10.3 N	∃z ∕IeV	32! 10.3-:	5 MHz 185 MeV	65 185-3	0 MHz 800 MeV	
Section	F	req I	Energy (Me	eV) Cav/	mag/CM	-	Туре	
RFQ		162.5	0.03-2.1					
HWR (β_{opt} =0.11)		162.5	2.1-10.3	8	8/8/1 H		VR, solenoid	
SSR1 (β _{opt} =0.22	β_{opt} =0.22) 325 10.3-35		1	6/8/ 2	SSR, solenoid			
SSR2 (β _{opt} =0.47)	325	35-185	35	5/21/7	SSR, solenoid		
LB 650 (β _g =0.61)	650	185-500	33	/22/11	5-cell ellip	ptical, double	
HB 650 (β _g =0.92	2)	650	500-800	2	4/8/4	5-cell ellip	ptical, double	

67 T. Khabiboulline | SRF cavity design, RF measurements and tuning

7/16/2024

‡ Fermilab

HB 650 MHz Cavity Helium Vessel

components:

- 1. Long Cylinder
- 2. Transition ring MC end
- 3. Transition ring FP end
- 4. Bellow assembly
- 5. Support lugs
- 6. Lifting lugs
- 7. Helium inlet
- 8. 2-phase pipe assembly
- 9. Tuner mounting lugs
- 10. Bellow restrains
- 11. Magnetic shielding (external)

🛟 Fermilab

The Scope of EM-Mechanical Design

- Minimize a sensitivity to microphonics due to He pressure fluctuations (df/dP) and mechanical vibrations
- Minimize a Lorentz Force Detuning (LFD) coefficient
- To keep the stiffness and tuning sensitivity at suitable level to allow for tuning.
- Keep provision for slow and fast tuner integration.
- Enough strength to withstand atmospheric pressure
- Dressed cavity has to be qualified in 5 different load conditions by stress analysis
- 1. Warm Pressurization
- 2. Cold operation at maximum pressure
- 3. Cool down and tuner extension
- 4. Cold operation at maximum pressure and LHe weight
- 5. Upset condition Insulating and beam vacuum failure

🛟 Fermilab

Cavity stiffness simulations

Stiffness kN/mm, vs. R2, mm	R2,mm	Stiffness kN/mm
16 14	110	4.75
12	115	6.2
8	120	7.3
6	125	8.75
2	130	10.3
110 120 130 140	140	14.7

	Young's modulus 293K/2K	Poisson ratio 293K/2K
Niobium	105/118	0.38
Titanium	106/117	0.37
Niobium- Titanium	62/68	0.33

 σ cavity, MPa

7/16/2024 **Fermilab**

10

Stress analysis

Stress analysis. Allowable Stresses (MPa)

		Allowable S	stress (S) fo	or materials	Al	Allowable Stress (0.6xS) for weld joints			
Material		2 K		293 K		2 K			
Nb		171	25		102.6		15		
Ti-45Nb		156		156		93.6			
Gr. 2Ti		319	99		191	191.4		59.4	
		Stress Category							
		Pm	P ₁	P _L I		$\mathbf{P}_{\mathbf{m}}(\mathbf{or} \mathbf{P}_{\mathbf{L}}) + \mathbf{P}_{\mathbf{b}}$		$P_{m}(or P_{L}) + P_{b} + Q$	
Material	2 K	293K	2 K	293K	2 K	293K	2 K	293K	
Nb	171	25	256.5	37.5	256.5	37.5	513	75	
Ti-45Nb	156	156	234	234	234	234	468	468	
Gr. 2Ti	319	99	478.5	148.5	478.5	148.5	957	297	
Nb Welds	102.0	i 15	154	22.5	154	22.5	308	45	
Ti-45Nb Welds	93.6	93.6	140.4	140.4	140.4	140.4	280.8	280.8	
Gr. 2Ti Welds	191.4	59.4	287	89	287	89	574	574	

Note : The allowable stresses have not been reduced by 0.8 (recommended by point 3.4.1.10 of TD-09-005, confirmed by Tom Peterson). For welds it has been reduced by factor of 0.6.

Pm = primary membrane stress; P_L = primary local membrane stress P_b = primary bending stress Q = secondary stress

🛟 Fermilab

7/16/2024
Stress analysis. Linearized Stress Table (MPa)

Location	P _m	S _a	P _m + P _b	S _a
A (Nb-Ti weld tuner end)	1.08	93.6	2.05	140.4
B (Bellow lower weld)	36	59.4	60	89
C (Bellow weld)	36.8	59.4	69.82	89
D (Bellow upper weld)	28.8	59.4	54.87	89
E (Nb weld at end cell)	4.46	15	5.53	30
F (Nb weld at Iris)	4.28	15	7	22.5
G (Nb material near stiffening ring)	5.66	25	12.4	37.5
H (Nb weld at equator)	6.33	15	11.62	22.5
I (Nb-Ti weld coupler end)	4.92	93.6	7.1	140.4

Simulation of stresses during production

Temperature	Protection	Tl as	ne steps during cavity sembly or operations	Insulated Vacuum, bar	Cavity Beamline, bar	He Vessel, bar	Forces on the cavity flange for fully constrained cavity, kN	Cavity length changes, for non- constrained cavity, mm	
	S	1	Cavity after dressing	1	1	1	0	0.00	
	acket	2	Cavity leak check at the clean room	1	0	1	-3.83	-1.10	
300K	ety Br	3	He Vessel leak check during CM assembly	1	1	0	0.014	-0.03	
avity=	Safo	4	He Vessel pressure test during CM assembly	1	1	3.3	-0.03	0.06	
To		5	He Vessel leak check during CM testing	1	0	0	-4.4	-1.10	
	talled	6	He Vessel pressure test during CM assembly	1	0	3.3	-3.87	-1.01	
5K	ner Ins	7	Start of cooling down CM or HTS	0	0	1.5	-0.02	0.04	
2K	Tur	8	Operating condition	0	0	0.03	0	0.00	
5K		9	Cold loss of vacuum accident	0	0	4	-0.05	0.10	

‡ Fermilab

7/16/2024

LCLS-II Tuner Electro-Mechanical Design

- Tuner must tune cavity (slow and fast) and protect cavity/He Vessel system during CM production cycle and operation of the accelerator
- Tuner needs to fit the existing inventory of cavities at FNAL. .."<u>short-short</u>" (cavity built for slim blade tuner for CM3/4/5...).
- Active tuner components (electromechanical actuator& piezo-stack) need to be replaceable through special ports;
- *High reliability of tuner components (electromechanical actuator and piezo-actuator);*
- Tight requirements for slow/coarse & fast/fine tuning resolution → cavity has narrow bandwidth (F_{1/2}~15Hz) and resonance control requirements ΔF_{peak}=10Hz (or σ=1.5Hz))

LCLS-II Tuner Electro-Mechanical Design

	nominal	250kHz	
Slow Tuner frequency range	maximum	450kHz	
Olow Tunon dimensional renge	nominal	0.75mm	
Slow Tuner dimensional range	maximum	1.3mm	
Slow Tuner sensitivity	1-2Hz/step		
Fast Tuner frequency range	1kHz		
Fast Tuner dimensional range	3um		
Fast Tuner tuning resolution	1Hz		
Fast Tuner stroke resolution	3nm		
Fast Tuner response bandwidth	5kHz		
Min. tuner stiffness	30kN/mm		
Min. tuner mechanical resonance	5kHz		
		insulated vacuum	
Tuner operating condition	T=20-60K		
Slow Tuner/ electromechanical actu	1000 spindle		
(20 years)	rotation		
Fast Tuner/ electromechanical actuator lifetime (20 years)		4*10 ⁹ pulses	

7/16/2024 **Fermilab**

LCLS II Tuner Schematics

- Slow/Coarse Tuner is double lever tuner (close to design of the SACLAY 1)
- Coarse Tuner ration 1/20 (Saclay 1 ~ 1/17)
- Fast Tuner two piezo installed close to flange of cavity /translation of the **stroke from piezo directly** to the cavity

Design of the LCLS II Tuner

design included several features specific to requirements that electromechanical actuator and piezo-elements replaceable through special designated port

Details of FAST (piezo) Tuner design

Encapsulated piezo designed and manufactured by Physik Instrumente (PI) per FNAL specifications.

Each capsule has inside two 18*10*10mm PICMA piezos. Piezo preloaded with 800N.

Forces/stroke on the cavity/He vessel system

Tuner Test results at HTS

Tuner Test results at HTS

82 T. Khabiboulline | SRF cavity design, RF measurements and tuning

Piezo Tuner Range

‡ Fermilab

7/16/2024

High reliability of tuner components

1. Phytron electromechanical Actuator (stepper motor/planetary gear/Ti spindle) (designed per FNAL specs in the frame of the Project X.)

Joint test (JLAB/FNAL) of production unit is underway at JLAB

LCLS II	Phytron 1.2A	planetary gear (ration 1:50)	Titanium & SS M12*1	+/-1300N	tested in ins. vacuum at HTS for 5000 turns (5 XFEL lifetimes). In the force range +/- 1500N. Motor run with current 0.7A

2. Piezo actuator – encapsulated piezo made at PI Ceramics per FNAL specification for LCLS II project

(Designated piezo lifetime program is underway at FNAL)

LCLS-II Tuner Summary

- Design of the LCLS II prototype cryomodule Tuner is mature. Several small issues found during prototype assembly and testing were corrected. Questions/comments from previous reviews were addressed.
- Tuner parameters, measured during tuner test at HTS, meet/exceed technical requirements specifications.
- Reliability of the tuner is addressed by two measures: tuner is accessible through designated ports and the active components (electromechanical actuator& piezo-actuator) illustrated reasonable longevity
- Preservation of the cavity Q0 with tuner (remnant magnetic field) will be tested in mid-March
- Procurement of long (~3 months) lead components (stepper motor and piezo-actuators) can be started

🔁 Fermilab

87 T. Khabiboulline | SRF cavity design, RF measurements and tuning

TRISTAN Type Coaxial Disk Ceramic

🛟 Fermilab

7/16/2024

Cold measurement.

TOSHIBA did mechanical job perfectly! These rather complicated devices was built without any single preliminary RF cold measurements. But we got good SWR instantly just after assembling! It was a big relief.

Components for High Power Test Stand

Coupling Waveguides

Input Couplers

7/16/2024

‡ Fermilab

Doorknobs

Capacitive-coupling Coupler

Coupler can be modified to have changeable coupling. Two bellows allow to move middle part of coupler with antenna.

Fermilab

7/16/2024

Power coupler high power tests

Power coupler high power tests

93 T. Khabiboulline | SRF cavity design, RF measurements and tuning

325 MHz coupler

RF kick caused by the input and HOM couplers

RF voltage: *U=(2PZ)^{1/2}, Z*–coax impedance; for *P*=300 kW and *Z*≈70 Ohms

$$U \approx 6 \text{ kV}$$

Transverse kick:

$$v = \frac{\Delta p_y c}{\Delta U_{acc}} \approx \frac{U}{2U_{acc}} = \frac{6kV}{2 \times 30MV} = 10^{-4}$$

Transverse kick caused by the couplers acts on a bunch the same direction for all the RF cavities of the linac.

Real part may be compensated by the linac feedback system;

Imaginary part dives the beam emittance dilution (here β is beta-function, σ is the bunch length, and U_0 is the initial beam energy): $\pi^2 v^2 E^2 \sigma^2 \beta^3 \gamma_0$

$$\gamma \varepsilon \approx \gamma(z_{\max}) y_{\max} y'_{\max} = \frac{\pi V E \sigma}{\lambda_{RF}^2 U}$$

7/16/2024

🛠 Fermilab

Beam Diagnostics

- Beam Position and Phase Measurement System (button –type or stripline BPMs)
- Beam Loss Measurement System (ionization chambers).
- Beam Intensity Measurement System (DC current transformers and beam toroids)
- Beam Transverse Profile Measurement System (traditional wire scanner or photo-disassociation of H⁻ by laser radiation)
- Beam Transverse Emittance Measurements (Allison-Type Emittance Scanners or Laser-Based Emittance Scanners)

Beam Diagnostics

Instant Electric Field induced by the 4 mm bunch (β =1)

BPM signals produced by the 4 mm rms bunch

- Hermetic feedthrough welding is finished.
- Next step = fit the electrodes and electron beam weld them into position.

BPMs for HWR cryomodule, prototype (top) and production (bottom) units

P.Ostroumov, PIP-II MAC meeting, 03/10/15

BPM signals spectral densities for various bunch lengths

BPMs are mounted to the focusing elements:

ring pickup

Summary

- RF design of the cavity is based on
- the accelerator operation regime pulsed or CW;
- the beam power and energy;
- the beam quality requirements.
- **RF** cavity parameter optimization includes:
- frequency,
- RT versus SRF
- operating temperature choice for SRF,
- optimal gradient,
- cavity shape optimization,
- number of cells,
- cell-to-cell coupling,
- HOM extraction,
- RF power coupling
- RF linac is self-consistent system and its subsystem are interconnected; therefore, the RF cavity design is an iterative process.

🚰 Fermilab

- □ RF cavity design includes:
- RF parameter optimization;
- MP analysis
- Mechanical optimization.

Summary

- □ The SRF cavity component design includes:
- the input power design;
- the cavity tuner design;
- The He vessel design.
- □ The SRF cavity manufacturing process contains a lot of operations and requires high technological culture:
- material quality control;
- cell manufacturing and pre-tune;
- final assembly;
- surface processing;
- welding into the He vessel;
- component assembly;
- cavitystring assembly;
- cryo-moduel assembly;
- alignment
- The cryo-module:
- Contains the insulating vacuum.
- Serves as the major structural element to which all other systems are attached to the accelerator tunnel floor.
- Serves as a pressure containment vessel in the event of a failure in an internal cryogen line.

🚰 Fermilab

PXIE RFQ Design Features

- All OFHC copper body machined from solid billets
- 4-vane cavity structure with fly cut modulated vane tips
- \bullet Four \sim 1.12 m long cavity modules with bolted joints
- 162.5 MHz frequency
- Total length: 4.46 m
- Pi-mode rods for mode stabilization
- Distributed fixed slug tuners

CAD model of assembled 4-module PXIE RFQ design concept

Accelerating H- from 300 keV to 2.1 MeV

Module #2 was manufactured before other modules

Tuner at one end of the RFQ. 50 mm protrusion, frequency shift is 45 kHz.

101 T. Khabiboulline | SRF cavity design, RF measurements and tuning

7/16/2024

‡ Fermilab

Sweeping vane tip profile along modulation curve.

$$df (x + dx, y + dy) \approx c \cdot f(x, y) + \alpha(x, y) \cdot dx + \beta(x, y) \cdot dy$$

$$x = y \Rightarrow \alpha(x, y) = \beta(x, y)$$

$$\alpha(-x, y) = -\alpha(x, y); \alpha(x, -y) = -\alpha(x, y)$$

$$\beta(-x, y) = -\beta(x, y); \beta(x, -y) = -\beta(x, y)$$

$$df (x + dx, y + dy) + df (-x + dx, y + dy) + df (x + dx, -y + dy) \approx 4c \cdot f(x, y)$$

‡Fermilab

7/16/2024

Bead-pull setup on RFQ Module #2

Program allow to position bead in any location near cavity center and measure field flatness. Multiple passes and post processing are included.

108 T. Khabiboulline | SRF cavity design, RF measurements and tuning

7/16/2024

🛟 Fermilab
Bead pull measurements of PIP-II RFQ

- Quadrant measurements: single quadrants 1 to 4 and average filed amplitude along RFQ length @ 30 mm radial offset.
- First bead pull measurement before tuning, FF approximately 80% for avg.

🛠 Fermilab

7/16/2024

109 T. Khabiboulline | SRF cavity design, RF measurements and tuning

Bead pull measurements of PIP-II RFQ

110 T. Khabiboulline | SRF cavity design, RF measurements and tuning

7/16/2024

Homework

HB cavity for the PIP II project has the following parameters:

- Frequency: 650 MHz;
- R/Q: 630 Ohm;
- G: 255 Ohm;
- Voltage: 20 MV;
- Surface resistance: 8.5 nOHm

Estimate:

- Wall loss;
- Stored energy.

Homework

Coaxial power coupler

- 1. Given:
 - 1. External conductor with outer diameter D1, SS wall thickness d1, Cu coating thickness d2
 - 2. Length L, internal conductor diameter D2
 - 3. RF power P in TW regime.
 - 4. One end temperature 300K other end 4K. 70K heat sink in the middle
 - 5. Thermal conductivity p1 for SS and p2 for copper not depend on temperature.
 - 6. Electrical surface resistance SS Rs1 for and Cu Rs2
 - 7. Thermal radiation is negligible. Attenuation of RF power is negligible
 - 8. Efficiency of 70 K cooler is 5%, efficiency of 4K cooler is 0.5%
- 2. Assumptions:
 - 1. Thermal radiation is negligible. Vacuum.
 - 2. Attenuation of RF power is negligible.
- 1. Questions:
 - 1. What heat power flow at 70K and 4K intercepts at P=0 W?
 - 2. What is power consumption at cryoplant at P=0 W?

$$P_t = \frac{\partial Q}{\partial t} = p \oiint_S \nabla T \cdot dS = p \cdot \Delta T / L \cdot S$$

